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Abstract. The paper establishes the existence of a nonconstant periodic solution of a general
second order nonautonomous Hamiltonian system with discontinuous nonlinearities. The multip-
licity of solutions is also studied.
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1. Introduction and the statement of the main result

In recent years, the theory of variational inequalities has been considerably
developed. It is well known that these unilateral problems express the principle of
virtual works or powers in its inequality form and are closely connected with the
convexity of the corresponding energy functionals involved, i.e., on the monotonici-
ty of their gradients (in the smooth case) or their subdifferentials (in the nonsmooth
one).

In the case of the lack of convexity, the variational expression of the problem
leads to a new type of formulation called hemivariational inequality theory
introduced and developed by P.D. Panagiotopoulos since the early 1980s.
Hemivariational inequalities are derived from nonconvex and nondifferentiable
superpotentials by using the mathematical notion of generalized gradient of F.H.
Clarke [3] for locally Lipschitz functions. The hemivariational inequality approach
has now been proved to be very efficient to describe the behaviour of several
mechanical problems, e.g., the delamination problem of multilayered plates,
nonmonotone semipermeability problems, the partial debonding of adhesive joints,
etc. For more details concerning this approach, we refer the readers to the book of
Panagiotopoulos [7].

The paper is devoted to the following boundary value problem, denoted (3 ), for
a second order nonautonomous Hamiltonian system with discontinuous non-

Nlinearities in R :
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¨2 u(t) 1 j(t) 5 e(t)

j(t) [  j(t, u(t) a.e. t [ (0, T ) ,x

~ ~u(T ) 2 u(0) 5 u(T ) 2 u(0) 5 0 ,

for a prescribed period T . 0.
2,1 NBy a solution of problem (3 ) we mean a function u [ W (0, T; R ) for which

1 None finds a function j [ L (0, T; R ) provided the relations in (3 ) are verified. Let
us precise now the meaning of the data entering problem (3 ). Throughout the

N 2 Npaper, the norm of the Euclidean space R is denoted by u ? u. Let e [ L (0, T; R ).
NThe function j : R 3 R → R is required to satisfy the following conditions:

N( j ) for each x [ R , j(? , x) is a measurable, T-periodic function, and j(t, 0) 5 0,0

;t [ R;
1( j ) for every constant M . 0 there is k [ L (0, T; R) such that1 M

u j(t, x) 2 j(t, y)u < k (t)ux 2 yu , ;uxu, uyu < M , a.e. t [ (0, T ) ;M

( j ) there exist numbers m . 2, a . 0, b . 0 such that2

1 0 2 N]j(t, x) 2 j (t, x; x) > a uxu 2 b , ;x [ R , a.e. t [ (0, T ) ,
m

0where j (t, x; y) stands for the generalized directional derivative of j(t, ?) at x in the
direction y and is defined by the formula

j(t, z 1 ly) 2 j(t, z)0 : ]]]]]]j (t, x; y) 5 lim sup ;
l1l→0

z→x

N 1 / 2( j ) there exists a point x [ R , with ux u > (b /a) , such that3 0 0

TE j(t, x ) dt , 0 ;0
0

( j ) there exist numbers r . 0 and g . 0 such that4

2j(t, x) > e(t) ? x 1 g uxu , ;uxu < r , a.e. t [ (0, T ) ;

N( j ) if y [ R satisfies e(t) [  j(t, y) for a.e. t [ (0, T ), then5 x

T TE j(t, y) dt <E e(t) dt ? y ;
0 0

( j ) for all t [ R, there is a continuous function a(t) . 0 such that6

n n¯j(t, x) < 2 a(t)uxu for each uxu > r , x [ R ,

¯where n . 2 and r . 0.
Here the notation  j(t, ?) stands for the generalized gradient of j(t, ?) in the sensex

of Clark which is defined by:
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N 0 N: j(t, x) 5 hx* [ R u j (t, x; y) > kx*, yl , ;y [ R j .x

The main difficulty in the study of problem (3 ) consists in the fact that the
corresponding potential is nonconvex, nonsmooth, without the usual coercive
quadratic term in the variable u(t) and under the presence of the linear term
determined by the function e(t) (compare, e.g., with the nonsmooth and nonconvex
Hamiltonian system treated in Adly, Goeleven and Motreanu [1]). This does not
allow to apply directly to problem (3 ) the approach relying on mini–max results in
the nonsmooth critical point theory (see Chang [2] and Motreanu [4]) because it
does not fit into the superlinear setting of such framework. We overcome here these
difficulties by imposing suitable growth conditions for the nonlinear part j(t, x) in
order to compensate the lack of coerciveness of the linear part (see assumptions
( j )–( j )).0 5

The aim of our study is to provide verifiable sufficient conditions ensuring the
existence of nontrivial solutions to problem (3 ). Our existence result concerning
problem (3 ) is the following.

THEOREM 1.1. Under assumptions ( j )–( j ), problem (3 ) has a nonconstant0 5
2,1 N ~solution u [ W (0, T; R ) with u and u periodic.

The theorem above is closely related to the theory of hemivariational inequalities.
For the formulation of problem (3 ) in terms of hemivariational inequalities as well
as for related results, comments and applications we refer to [1, 5–7]. Finally, we
establish in Theorem 3.1 a multiplicity result for the set of solutions to problem
(3 ). In fact, it is shown that under the additional hypothesis ( j ), assuming that the6

Npotential j(t, ?) is even on R , for each t, and e 5 0, problem (3 ) admits infinitely
many nonconstant solutions.

The rest of the paper is organized as follows. Section 2 contains the proof of
Theorem 1.1. Section 3 deals with the multiplicity result for problem (3 ).

2. Proof of the main result

In this section we give the proof of Theorem 1.1. For a later use we introduce the
` Nfunctional J : L (0, T; R ) → R by

T
` NJ(u) 5E j(u(t)) dt , ;u [ L (0, T; R ) .

0

Let us show that the functional J is Lipschitz continuous on bounded subsets of
` NL (0, T; R ). To this end let M . 0 be a fixed number. Then, by assumption ( j ),1

we can write
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T

uJ(v) 2 J(w)u <E u j(t, v(t) 2 j(t, w(t))u dt
0

T

<E k (t)uv(t) 2 w(t)u dtM
0

< ik i iv 2 wi .1 `M L L

` NThis justifies that J is Lipschitz continuous on bounded sets in L (0, T; R ).
Consequently, it makes sense to consider the generalized gradient J(u) of J at any

` Nu [ L (0, T; R ).
Moreover, one can check readily that assumption ( j ) implies the next condition1

` N 1in Clarke [2], p. 80: for every u [ L (0, T; R ) there exist « . 0 and k [ L (0, T; R)
such that u j(t, x) 2 j(t, y)u < k(t)ux 2 yu whenever ux 2 u(t)u, uy 2 u(t)u < «, a.e. t [
(0, T ).

This allows to conclude that for every z [ J(u) there exists j 5 j(z) [
1 N 1 N ` NL (0, T; R ) (in fact, j(?) ? v(?) [ L (0, T; R ), ;v [ L (0, T; R )) satisfying

T
` Nkz, vl 5E j(t) ? (t) dt , ;v [ L (0, T; R ) (2.1)

0

and

j(t) [  j(t, u(t)) a.e. t [ (0, T ) (2.2)x

(see Clarke [2], p. 80).
1 NLet H denote the Hilbert space of T-periodic, absolutely continuous, R -valuedT

functions on R whose derivative is square integrable on (0, T ). The Hilbert space
1H is endowed with the normT

T
2 2 2 1~iui 5E (uu(t)u 1 uu(t)u ) dt) , ;u [ H .T

0

1By means of the functional J we introduce I : H → R byT

T T T1 2] ~I(u) 5 E uu(t)u dt 1E j(t, u(t)) dt 2E e(t) ? u(t) dt2 0 0 0

1 2 1] ~5 iu i 1 J(u) 2 (e, u) , ;u [ H . (2.3)2 2L L T2
1It is clear that the functional I is locally Lipschitz on H . We apply to I theT

Mountain Pass Theorem in Chang’s variant for locally Lipschitz functions (see
Chang [2]).

1Firstly, we check that I : H → R satisfies the Palais-Smale condition in the senseT
1of Chang [2] for locally Lipschitz functionals. Towards this let hu j , H be an T

sequence such that I(u ) is bounded, sayn

uI(u )u < c , n > 1 , (2.4)n 0
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and there is w [ I(u ) withn n

1*w → 0 in H as n → ` . (2.5)n T

We claim that
1hu j is bounded in H . (2.6)n T

Taking into account (2.4) and (2.5), for n sufficiently large, we can write

1 1
] ]c 1 iu i > c 1 iu i iw i0 n 0 n n *m m

1
]> I(u ) 2 kw , u ln n nm

T1 1 12] ] ]~> 2 iu i 1E j(t, u ) 2 z ? u dt2S D S Dn L n n n2 m m0

T1
]1 2 1 E e ? u dtS D nm 0

T1 1 12 0] ] ]~> 2 iu i 1E j(t, u ) 2 j (t, u ; u ) dt2S D S Dn L n n n2 m m0

1
]1 2 1 iei iu i ,2 2S D L n Lm

where z (t) [  j(t, u (t)) for a.e. t [ (0, T ). Then, using assumption ( j ), one findsn x n 2

a constant c such that1

1 1 1 12 2] ] ] ]~c 1 iu i > 2 iu i 1 aiu i 2 c 1 2 1 iei iu i . (2.7)2 2 2 2S D S D0 n n L n L 1 L n Lm 2 m m

Since m . 2 and a . 0, estimate (2.7) shows that property (2.6) is true.
1 1*The duality map L : H → H is given byT T

L 5 A 1 B , (2.8)

1 1*with A, B [ L(H , H ) expressed as followsT T

T

~ ~kAu, vl 5E u ? v dt
0

and
T

kBu, vl 5E u ? v dt ,
0

1for all u, v [ H .T
1 ` NDenote by i : H → L (0, T; R ) the inclusion map, which is known to beT

compact. The element w [ I(u ) can be expressed as followsn n

w 5 Au 1 i*z i 2 Be, for some z [ J(u ) .n n n n n
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In view of (2.5) we know that

1*Au 1 i*z i 2 Be → 0 in H as n → ` . (2.9)n n T

Property (2.6) yields that along a subsequence one has

2 Nu → u in L (0, T; R ) as n → ` (2.10)n

1for some u [ H . Again by (2.6) we derive that hu j is a bounded sequence inT n
` NL (0, T; R ). Recall that the functional J is Lipschitz continuous on bounded

` Nsubsets of L (0, T; R ). This fact ensures the boundedness of the sequence hz j inn
` NL (0, T; R ). Then the compactness of the adjoint operator i* enables us to obtain

1*that, for a renamed subsequence, hi*z ij converges in H . From (2.9) we see thatn T
1*hAu j converges in H . Combining with (2.10) we infer from (2.8) that hLu jn T n

1*converges in H . Consequently, we found a subsequence of hu j denoted again byT n
1hu j which is convergent in H . This completes the proof of Palais-Smale conditionn T

for the functional I.
The next step of the proof consists in showing the following estimate: there exists

d . 0 such that

1 2]H JI(u) > min , g d , ;iui 5 d . (2.11)2

In writing (2.11) we used the constant g . 0 given in assumption ( j ).4
1 ` NIndeed, the continuity of the inclusion map i : H → L (0, T; R ) provides aT

constant c . 0 such that
1iui < ciui , ;u [ H . (2.12)`L T

5Then, setting d r /c, with r . 0 given in ( j ), inequality (2.12) and assumption4

( j ) imply that4

1 2]H JI(u) > min , g iui , ;iui < d .2

In particular, we get assertion (2.11).
In order to complete the justification of requirements in the nonsmooth version of

Mountain Pass Theorem we need the following formula:
2m 2m 21 2m N

 (s j(t, sx)) 5 2 ms j(t, sx) 1 s  j(t, sx)x , ;t [ R, x [ R , s . 0 ,s x

(2.13)

where the notation  stands for the generalized gradient with respect to the variables

s. Lebourg’s mean valued theorem and equality (2.13) ensure that for every s . 1
Nthere is a t [ (1, s) such that for every t [ R, x [ R one has

2m 2m 21 2ms j(t, sx) 2 j(t, x) [ (2mt j(t, tx) 1 t  j(t, tx)x)(s 2 1) .x

It follows that
2m 2m 21 0s j(t, sx) 2 j(t, x) < t (s 2 1)( j (t, tx; tx) 2 mj(t, tx)) ,x
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Nfor all t [ R, x [ R , s . 1. On the basis of condition ( j ) one deduces that2

m 2m 21 m 2j(t, sx) < s j(t, x) 1 t (s 2 1)s m(2a utxu 1 b )

Nfor all t [ R, x [ R , s . 1. It turns out that
1 / 2bm ]S Dj(t, sx) < s j(t, x) , ;t [ R, s . 1, uxu > . (2.14)

a

We point out that we can use in estimate (2.14) the point x 5 x prescribed by0

hypothesis ( j ). Consequently, from (2.14) we obtain that3

T T
mI(sx ) 5 J(sx ) 2 s E e(t) ? x dt < s E j(t, x ) dt 1 siei ux u10 0 0 0 L 0

0 0

whenever s . 1. Since m . 2, assumption ( j ) yields3

I(sx ) → 2` as s → 1` . (2.15)0

Property (2.15) allows to conclude that for s sufficiently large one has that
I(sx ) < 0 and isx i . d. Therefore all the assumptions of Mountain Pass Theorem0 0

for locally Lipschitz functionals are fulfilled in the case of function I on the Hilbert
1 1space H . Then there exists a point u [ H such thatT T

0 [ I(u) (2.16)

and

1 2]H JI(u) > min , g d . 0 . (2.17)2

Comparing I(0) 5 0 with (2.17), we derive that u ± 0. Relation (2.16) reads as

T T T
1~ ~E u(t) ? v(t) dt 1E j(t) ? v(t) dt 2E e(t) ? v(t) dt 5 0 , ;v [ H . (2.18)T

0 0 0

~From (2.18) we derive that u admits a weak derivative which is equal to

ü(t) 5 j(t) 2 e(t) for a.e. t [ (0, T ) . (2.19)

Hence, according to (2.19), (2.18) (taking v to be the vectors of the canonical basis
N 1 Nin R ) and the regularity information j [ L (0, T; R ), we derive that u [

2,1 N ~W (0, T; R ). By means of (2.18) and (2.19), it is seen that u satisfies

T T

~ ~ ¨ ~ ~u(T ) 5 u(0) 1E u(t) dt 5 u(0) 1E (j(t) 2 e(t)) dt 5 u(0) .
0 0

We thus established that u fulfills the conditions of solving problem (3 ).
It remains to check that the constructed solution u is not constant. Arguing by

contradiction, let us admit that u(t) 5 y, ;t. Then, by (3 ), one has e(t) [  j(t, y)x

for a.e. t [ (0, T ), so one can apply hypothesis ( j ). Accordingly, by ( j ), we derive5 5

that
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T

I(u) 5 I( y) 5E [ j(t, y) 2 e(t) ? y] dt < 0 .
0

This contradicts relation (2.17). The proof of Theorem 1.1 is thereby completed.

3. A multiplicity result for problem (333 )

In this section, we will suppose that

e(t) 5 0 , ;t [ R .

We have the following multiplicity result.

THEOREM 3.1. Suppose that assumptions ( j )–( j ) hold, and moreover j(t, ?) is0 6
Neven for every t [ R, i.e., j(t, 2x) 5 j(t, x) for all (t, x) [ R 3 R . Then (3 ) has

infinitely many pairs (u, 2u) of nonconstant T-periodic solutions.
Proof. It is clear that the functional I defined in (2.3) (without e) is even. Since

by ( j ), j(t, 0) 5 0, then I(0) 5 0. In the proof of Theorem 1.1, we have shown that I0

satisfies the Palais-Smale condition and the estimate stated in (2.11). In order to
apply to I the symmetric version of the Mountain Pass Theorem, it suffices to prove
that I satisfies the following condition: for all k [ N*, there exists a subspace E of

1H with dim(E) 5 k such thatT

I(u) → 2` as iui → 1` , u [ E .

Let k [ N* and let E be a subspace such that dim(E) 5 k.
By the equivalence of the norms on a finite dimensional subspace, we have

2 2iui < Ciui ;u [ E , (3.20)`

where C 5 C(E) . 0 is a constant.
Let

n:m 5 inf E a(t)uu(t)u dt . (3.21)
¯iui 52r ¯uu(t )u.r`

u[E

It is clear that m . 0. By (3.20) and ( j ), we have6

C 2 n]I(u) < iui 2E a(t)uu(t)u dt 1E j(t, u(t)) dt .`2 ¯ ¯uu(t )u.r uu(t )u<r

Since the function j(t, ?) satisfies the Lipschitz condition on bounded sets stated in
( j ), there exists a constant c . 0 such that1

E j(t, u(t)) dt < c .
¯uu(t )u<r

Consequently, the following estimate is valid



PERIODIC SOLUTIONS FOR SECOND ORDER DIFFERENTIAL EQUATIONS 17

n niui uu(t)uC `2 n n] ]] ¯ ]]I(u) < iui 2 E a(t)2 r dt 1 cn n n`2 ¯2 r iui¯uu(t )u.r `

C m2 n] ]]< iui 2 iui 1 c , ;u [ E\h0j .n n` `2 ¯2 r

Since n . 2, we deduce that I(u) → 2 ` as iui → 1`, u [ E.
Hence we are in a position to apply the nonsmooth version of Symmetric

Mountain Pass Theorem which yields the desired conclusion. This completes the
proof. h
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